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Abstract
Electron spin-resonance experiments were performed on Co2+ substituting for
Zn2+ or Mg2+ in powder samples of Zn2(OH)PO4 and Mg2(OH)AsO4. These
two compounds are iso-structural and contain the Co2+ in two environments with
approximately octahedral and trigonal bipyramidal structures. The observed
resonances are described using a theoretical model that considers the departures
from the two perfect structures. It is shown that resonance in the penta-
coordinated complex is allowed, and the crystal fields that would reproduce
the resonance of the Co2+ in the two environments are calculated. The low
intensity of the resonance in the penta-coordinated complex is explained by
assuming that this site is much less populated than the octahedral one; this
assumption was verified by a molecular calculation of the energies of the two
environments, with both Co and Zn as central ions in Zn2(OH)PO4.

1. Introduction

Mineral solid-state chemistry offers an important contribution to materials science [1] in the
search for systems with new and useful physical properties. The phosphate and arsenate
minerals crystallize in various structures, sometimes containing several non-equivalent sites
for the metals. The minerals of the olivine group, with the formula ABXO4, have been
known for a long time [2], and the adamite family, with formula [M2(O/OH)(XO4)], belongs
to this group and takes its name from the natural compound [3, 4] Zn2(OH)AsO4. The
compounds studied in this work belong to this family, and the cations can occupy two sites
with rather different environments, one being octahedral and the other penta-coordinated, so
rather different magnetic properties can be expected when magnetic cations are employed. The
recently synthesized compounds Zn2(OH)PO4 [5], Co2(OH)PO4 [5], Mg2(OH)AsO4 [6,7], as
well as the natural Co2(OH)AsO4 [1], are of the adamite type and present these two types of
site. We thus found it interesting to study the properties of the Co2+ ions as impurities in the

0953-8984/02/082025+17$30.00 © 2002 IOP Publishing Ltd Printed in the UK 2025

http://stacks.iop.org/cm/14/2025


2026 M E Foglio et al

two non-magnetic compounds, as a first step in gaining an understanding of the properties of
the concentrated compounds.

The electron spin-resonance (ESR) technique is fruitful as regards obtaining local
information on the environment of the magnetic ion, and the Co2+ ion is particularly useful for
this kind of study because its g-value has a strong crystal-field dependence in these compounds.
To analyse the ESR measurements it is necessary to have information about the splitting of the
energy levels with both the crystal field and the electronic Coulomb repulsion, and to obtain
this information we employed optical diffuse reflectance measurements [8].

The experimental ESR powder spectra for Co2+ impurities in Zn2(OH)PO4 and
Mg2(OH)AsO4 both present two different sets of lines, one very intense, and the other just
observable. The average of the g-factors of the intense spectra is 4.15 in the two compounds, a
value close to the 4.33 expected for Co2+ in moderately distorted octahedral symmetry [9], and
it seems reasonable to assign these spectra to that environment and apply the approach already
employed [10] in the study of the ESR of Co2+ in NH4NiPO4·6H2O, where the crystal fields
that reproduce the observed spectra were obtained. As the remaining lines are very weak, one
should analyse whether they belong to the penta-coordinated symmetry, and in that case the
possible reasons for their low intensity.

We are not aware of any theory describing the ESR of Co2+ in the penta-coordinated
environment, a distorted trigonal bipyramid, and we first calculated the crystal fields of the
perfect trigonal bipyramid following the existing literature [11, 12]. To analyse the distorted
complex we derived the normal modes of the trigonal bipyramid with respect to the reference
complex, and then obtained the Jahn–Teller contributions [13,14] to the crystal field acting on
the Co2+, that is generated by these modes.

In this calculation we have introduced a procedure that uniquely defines the orientation and
size of the two reference complexes, so that the normal modes that describe their deformation
are free from irrelevant rotations and expansions.

These results were then employed to calculate the theoretical ESR spectra [15]. We found
that for the system parameters obtained from the optical spectra we should expect the ground
doublet to be MJ = ±1/2, corresponding to an allowed spectrum. The rather low intensity
of this type of spectrum seems to indicate a preference of Co2+ for the octahedral sites in the
crystal structure—a conjecture that was advanced in a preliminary report [16] on the ESR of
impurities of this ion in Mg2(OH)AsO4, and that is confirmed in the present work. Employing
a molecular calculation we have also verified that the formation energies of the two types of
complex, with Co and with Zn as the central ions, are compatible with this hypothesis.

The description of the experiments and experimental analysis of the data are presented in
section 2. The theory of the ESR of the Co2+ in a distorted trigonal bipyramid is presented
in section 3, together with the theoretical analysis of the two types of complex in the two
compounds. A discussion of our results is presented in section 4 together with our conclusions.

2. Experimental procedure

2.1. Synthesis and characterization of the materials

Compounds with Co2+ substituting Mg and Zn in Zn2(OH)PO4 and Mg2(OH)AsO4 were
prepared by hydrothermal synthesis, starting from the (M, Co)3(XO4):8H2O (M = Zn, Mg)
vivianites, previously prepared as reported elsewhere [17]. Approximately 0.200 g of these
precursors were disaggregated in about 75 ml of water and were placed in a poly(tetra-
fluoroethylene)-lined stainless steel container (about three-quarters full) under autogenous
pressure. The reaction was carried out at 180 ◦C and maintained for one week. The resulting
microcrystalline products were filtered off and washed with ether and dried in air.
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Table 1. (a) The transitions between the ground 4T1g level and the levels shown at the top of
each column, in cm−1, and assigned from the experimental spectra of the octahedral complexes of
Co2(OH)PO4 and Co2(OH)AsO4; the level 4T1g(P) corresponds to the highest one of the same
symmetry. (b) The best fit, obtained with the values of B and Dq shown in the last two columns.

4T1g → 4T2g
4A2g

4T1g(P) B Dq

PO4

(a) 8450 15 450 18 350
(b) 7819 16 013 18 324 767.6 819.4

AsO4

(a) 7700 15 500 18 020
(b) 7616 15 585 18 011 758.9 796.9

The results of the analysis of Mg, Zn, Co, P, and As by inductively coupled plasma atomic
emission spectroscopy (ICPAES) are in good agreement with the proposed formulae. The
compounds were also characterized by x-ray powder diffraction, using the Rietveld method.
The diffractograms were indexed with the Pnnm space group and the lattice parameters
a = 8.042(3) Å, b = 8.369(2) Å, and c = 5.940(2) Å for the phosphate compound and
a = 8.286(2) Å, b = 8.594(2) Å, and c = 6.051(1) Å for the arsenate. The parameters
of the phosphate compound are only slightly different from those given in [5], while those
of the arsenate coincide with the data published by other authors [6, 7]; the results obtained
in the last three references were from investigations performed on single crystals. The x-ray
powder pattern was recorded employing Cu Kα radiation with a PHILIPS X’PERT automatic
diffractometer, with steps of 0.02◦ in 2� and fixed-time counting of 1 s in the 5◦ < 2� < 70◦

range. We preferred to use our own experimental parameters in the present paper.

2.2. Optical studies

The necessary optical data were obtained from diffuse reflectance experiments, performed in
a CARY 2415 UV–VIS–IR spectrometer, controlled with a VARIAN DS15 workstation, in
the 5000–50 000 cm−1 wavenumber region [8, 18]. The whole set of optical data used in this
work was recorded at room temperature, and all the relevant data that were needed in the
present work are given in tables 1 and 2. Figure 1 presents the experimental data for both the
phosphate and the arsenate Co compounds studied in this paper. The system parameters of the
octahedral complexes are slightly different from those already published [8,18], because they
were obtained from the optical spectra after including a spin–orbit correction in the ground
orbital level3.

2.3. Electron spin resonance (ESR)

The ESR spectra were performed at X Band on a Bruker ESP300 spectrometer. Cooling
and temperature control of the samples were achieved with a standard OXFORD helium
continuous-flow cryostat, included in the microwave cavity. Magnetic field measurements
were made simultaneously with the ESR spectra recording, using a Bruker ER035M NMR
gaussmeter. The resonant frequency of the cavity was measured with a Hewlett-Packard 5352B
microwave frequency counter.

3 When we derived the system parameters of the octahedral complexes from the optical spectra, we shifted the ground
orbital level by the spin–orbit correction, estimated to be 2.5αλ ∼ −635 cm−1. This improvement was not used for
the penta-coordinated complex.
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Figure 1. Diffuse reflectance spectra for (a) Co2(OH)PO4 and (b) Co2(OH)AsO4. The horizontal
scale is linear in the wavelength, but has been labelled employing the corresponding wavenumbers.

Table 2. (a) The transitions between the ground level 4A′′
1 and the levels shown at the top of

each column, given in cm−1, and assigned from the experimental spectra of the penta-coordinated
complexes of Co2(OH)PO4 and Co2(OH)AsO4. (b) The best possible fit to the five transitions.
(c) The best fit obtained by adjusting only the three transitions of higher energy. The corresponding
values of B, Ds , Dt are given in rows (b) and (c) of table 5.

4A′
2 → 4A′′

1 , 4A′′
2

4E′′ 4E′ 4A′
2(P)

4E′′(P)

PO4

(a) 6400 7000 11 100 15 800 19 600
(b) 3233 4835 12 868 17 386 17 947
(c) 1511 3603 11 106 15 801 19 604

AsO4

(a) 5000 6250 10 870 16 000 19 800
(b) 2707 4440 12 210 17 188 18 595
(c) 1437 3535 10 876 15 999 19 805

Only powder spectra could be measured for the two systems studied here because it was
not possible to obtain single crystals, and small concentrations of Co (1% in the arsenate and
0.1% in the phosphate) substitute for the metals in the two lattices. The curves labelled (a) in
figures 2 and 3 show the measured ESR spectra for the two samples, recorded at 4.2 K, and
they both clearly show three sets of lines with a well defined hyperfine structure that identifies
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Table 3. Values of the principal g- and A-parameters, obtained from the spectra in figures 2 and 3.
The values of the A-parameters are in units of 10−4 cm−1. (a) The octahedral complex: the g- and
A-values were obtained from a program simulating powder spectra, as described in the text. (b) The
parameters for the penta-coordinated Co2+, also estimated by simulation.

g1 g2 g3 A1 A2 A3

PO4

(a) 5.89 ± 0.02 4.55 ± 0.05 2.02 ± 0.02 240 ± 5 155 ± 8 85 ± 3
(b) 8.0 ± 0.5 3.2 ± 0.3 2.0 ± 0.2

AsO4

(a) 6.22 ± 0.02 4.21 ± 0.05 2.05 ± 0.02 140 ± 5 120 ± 7 55 ± 5
(b) 9.0 ± 1.5 3.0 ± 0.5 2.0 ± 0.2

the Co2+ ion. There are also some extra lines, rather weak for the phosphate but more intense
for the arsenate, that preclude an automatic fitting of the spectra. We then simulated the
powder spectra of the hexa-coordinated Co2+ with a program which allows any symmetry, line
position, hyperfine tensor, and linewidth anisotropy, and our best results, plotted as curves
(c) of figures 2 and 3, correspond to the g-values shown in rows (a) of table 3. Their values
and positions are also shown by arrows below the simulated curves (c).

The extra lines near 200 mT for the phosphate show a hyperfine structure typical of the
Co2+, and are given in more detail in the inset of figure 2. The remaining lines for the two
compounds are rather broad and show a collapsed hyperfine structure. Curve (b) shows the
sum of the simulated spectrum of the hexa-coordinated Co2+ (c) and a simulation of the penta-
coordinated Co2+ that employs the g-values given in rows (b) of table 3 and is appropriately
renormalized to account for the smaller relative concentration of the latter, in figures 2 and 3.
These g-values have rather large errors, and their positions are shown by arrows above the
measured spectra (a) of figures 2 and 3. In the inset of figure 2 we also show the detail of the
hyperfine structure near 200 mT both in the experimental and in the simulated spectrum.

The assignment of the extra lines to the penta-coordinated complex will be further
discussed in section 3.5.

3. Theoretical discussion

3.1. Hexa-coordinated Co

We shall first discuss the hexa-coordinated Co2+ ions, that are surrounded by six oxygens in
a fairly regular octahedron [15]. In the present case we have a powder spectrum, and we
could only measure the three principal values gi of the g-tensor (see table 3). As in a previous
work [10], we shall consider the effect that the crystal field generated by the normal modes of
the octahedron has on the gyromagnetic tensor g. This method systematizes the procedure for
obtaining that field, and in table 4 we give the normal modes that reproduce the experimental
values of the three gi . We shall then choose a reference perfect octahedron centred on the
Co2+, calculate the normal modes corresponding to the crystallographic positions of the O,
and compare them (in table 4) with those obtained from the experimental spectra.

Only the normal coordinates that are invariant under inversion with respect to the centre
of the octahedron are necessary in the present problem [10, 19], and these are separated into
the three sets {Q1}, {Q2,Q3}, and {Q4,Q5,Q6}, with the corresponding Qj transforming
respectively like the bases of the irreducible representations A1, E, and T2 of the cubic group,
as given in table 2 of [20].
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Figure 2. ESR spectra of Co2+ in Zn2(OH)PO4. (a) The experimental spectrum. (b) The sum
of the simulated spectrum for the hexa-coordinated complex and that for the penta-coordinated
complex. (c) The simulated spectrum for the hexa-coordinated complex. The g-values of the
octahedral complex and the penta-coordinated complex are given in table 3. The arrows on (c)
show the g-values and their positions for the octahedral complex, while those on (a) correspond to
the penta-coordinated complex. The inset gives the detail of the experimental hyperfine structure
and of the simulated one (around g2), attributed to the Co2+ in the triangular bipyramid.
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Table 4. Normal modes of the octahedral Co divided by the Co–O distance R in Co:Zn2(OH)PO4
and Co:Mg2(OH)AsO4. (a) Values that adjust the experimental values of the g-tensor. (b) Values
obtained from the crystallographic positions corresponding to the pure compounds.

Q2/R Q3/R Q4/R Q5/R Q6/R

PO4

(a) 0 −0.044 07 0.034 78 0.034 78 0.114 25
(b) 0 −0.116 83 −0.017 17 −0.017 17 −0.056 41

AsO4

(a) 0 −0.0441 0.040 32 0.040 32 0.099 89
(b) 0 −0.093 28 −0.028 18 −0.028 18 −0.069 82

In a purely octahedral crystal field, the 4F ground state for isolated Co2+ (3d7) splits into
two orbital triplets, 4T1, 4T2, and one orbital singlet, 4A2. Spin–orbit effects partially lift the
degeneracy of the 4T1 triplet into one �6, one �7, and two �8 subspaces, and the resonance for
the lowest doublet (�6) is isotropic with g = 4.33 [9]. The addition of lower-symmetry crystal
fields produces further splitting of the 4T1 triplet, giving six Kramers doublets, and in most cases
it is found that the trace of the g-tensor is close to the cubic isotropic value [21]; in the present
case the average value of g is 4.1537 for Co:Zn2(OH)PO4 and 4.153 for Co:Mg2(OH)AsO4.
To understand these values it is sufficient to consider the Co2+ in pure octahedral symmetry; the
analysis of this result follows closely that employed in [10] and will not be repeated here [15].

In the lowest order one obtains g from the matrix elements of the Zeeman term in the �6

subspace of the 4T1 ground triplet. The matrix elements of the orbital angular momentum L

within the lowest T1 subspace are proportional to those of a P term, and the proportionality
constant α = −1.4110 is affected by the mixing with the excited term 4P, that is also of 4T1

symmetry. Its value can be obtained [15] from the Racah parameter B and the crystal-field
parameter Dq, that were estimated from the spectroscopic data and are given in table 1.

To analyse further the experimental g-tensor, one could try to find crystal-field values that
would reproduce the measured results, and a study of this type was presented by Abragam and
Pryce for the cobalt Tutton salts [22]. To simplify the study, we present a model that describes
all the crystal fields acting on the Co as originating in the crystal field of the six nearest O
located at the vertices of a deformed octahedron, obtained by displacement of the vertices of
the reference octahedron. If one neglects the mixing of other configurations into the ground
configuration (3d)7, it is sufficient to keep only the part of the crystal field V that is even
under inversion. We can then write V = ∑7

i=1 V (ri ), where V (r) is the sum of homogeneous
polynomials of second and fourth order in the components x, y, z of the electronic coordinates
r. Within our model, one could then write [19]

V (r) =
∑
j

QjVj (r) (1)

where the Qj and Vj (r) transform like the same partners of irreducible representations of the
octahedral group [20]. As theVj (r) must be even under inversion, the Qj must have the same
property, an only the six Qj with j = 1, . . . , 6 discussed at the beginning of this section would
appear in equation (1), but we shall not consider the identical representation A1 because it does
not modify the g-tensor. The useful Vj (r) are given in equations (4)–(6) from [10].

To study the effect that V (r) given in equation (1) has on the g-tensor of, we shall
employ second-order perturbation theory [23], using both V (r) and the Zeeman term HZ =
(geS + L) · H as perturbations. The change δg in the g-tensor is then obtained from
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S δg H = 2

3
(ge + α)

µB

'
{−CE[

√
3Q2(SxHx − SyHy)

+ Q3(3SzHz − S · H)] + CT [Q4(SzHy + SyHz)

+ Q5(SxHz + SzHx) + Q6(SxHy + SyHx)]}, (2)

where µB is the Bohr magneton, ' is the splitting between the �6 doublet and the lowest �8

quadruplet in the octahedral symmetry, and ' = 283 cm−1 in the P compound.
The values CE = 6436 cm−1 Å−1 and CT = −3666 cm−1 Å were obtained employing

the Co–O distance [15] R = 2.111 76 Å−1. We can now calculate the crystal fields that would
reproduce the experimental values of g or, equivalently, the corresponding normal modes
within the approximations just discussed. As there are more normal modes than data, we fix
the relations Q4 = Q3 = 0.3044Q6, which correspond to the normal modes calculated below
from the crystallographic positions, and we obtain a perfect fit to the experimental values
employing the normal modes given in table 4.

For Co2(OH)AsO4 one obtains α = −1.4128, ' = 282 cm−1, and R = 2.1224 Å, so
CE = 6287 cm−1 Å−1, and CT = −3558 cm−1 Å−1. As before, we fixed Q4 = Q3 =
0.4037Q6.

To calculate the crystallographic normal modes of the octahedron it is necessary to choose
a reference perfect octahedron centred on the Co2+. To this end, we consider the three normal
modes of pure rotation [19], Q19, Q20, and Q21, and we choose the axes of the reference
octahedron such that these three normal coordinates are zero, because they should not have
any effect on the properties of the complex. The value R = 2.111 76 Å of the Co–O distance
in the reference octahedron was chosen so that Q1 = 0, and by this procedure we obtain a
unique reference octahedron and minimize the effect of irrelevant rotations and expansions
on the values of the normal modes. With the crystallographic ionic positions with respect
to this reference octahedron, we found the normal modes given in the third line of table 4.
This normal modes are different from those given in the first line of the same table, that were
obtained from the experimental g-tensor. This result indicates that although the nearest O to the
Co are the main source of the cubic field [19], the remaining non-cubic perturbations contain
strong contributions due to the rest of the crystal. We conclude that the experimental g-tensor
could be explained by the crystal field V (r) of equation (1), given in relation to the axes of
the reference octahedron, by employing the Qj given in row (a) of table 4. The agreement is
perfect because there are more free normal coordinates than available components of δg, but
the theory presented can only be considered a first approximation. In particular, although the
crystal-field theory of point charges gives the right symmetry properties, it is only a very rough
description of the physics of the problem.

Although we have not analysed the hyperfine tensor in detail, we have verified that its
components are compatible with the normal modes necessary to reproduce the change δg in
the g-tensor.

3.2. Penta-coordinated Co

3.2.1. The crystal field of the trigonal bipyramid. The structure of the penta-coordinated
complex of Co2+ is very close to a trigonal bipyramid. Following a method similar to that
employed in the octahedral case [15], we chose an orthogonal system of axesX, Y,Z, such that
the normal modes obtained from the crystallographic positions would not have contributions
from irrelevant rotations and expansions. There are two different Co–O distances in the
reference complex: Ra corresponds to the three ligands in the XY -plane (equatorial O) and Rc

to the two along the Z-axis (axial O). Two crystal-field parameters Ds and Dt are necessary
for the trigonal bipyramid, and can be estimated employing the point charge model [11, 24].
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The crystal-field potential VCF can be expressed by the usual formula:

VCF (r) =
∑
kq

√
4π

2k + 1

∑
1

q1
rk1<

rk+1
1>

Y ∗
kq(θ1, ϕ1)C

(k)
q (θ, ϕ), (3)

where Ykq(θ1, ϕ1) are the spherical harmonics at the position of the 1th ligand and the
C(k)
q (θ, ϕ) = √

4π/(2k + 1)Ykq(θ, ϕ) are usually called Racah’s rationalized spherical
harmonics. In our actual calculation we have employed the real combinations Clm(θ, ϕ)

and Slm(θ, ϕ) which are proportional to cos(m, ϕ) and sin(m, ϕ) respectively [25]. In the
absence of the spin–orbit interactions, one employs the irreducible representations � of the
trigonal bipyramid to classify the eigenstates |α, S, L, �, γ, a〉 of the Hamiltonian, which are
simply related to the states |α, S, L,ML〉 (the index α identifies the particular states with the
same S,L). In table I of [11] we find that the irreducible representations A′

2, A′′
1, A′′

2, E′, and
E′′ are contained in the two terms 4F and 4P, and that the |α, S, L,ML〉 states that generate
the corresponding subspaces are {|3, 3/2, 3, 0〉, |3, 3/2, 1, 0〉} → A′

2, {|3, 3/2, 3,±3〉} →
(A′′

1,A′′
2), {|3, 3/2, 3,±2〉} → E′, and {|3, 3/2, 3,±1〉, |3, 3/2, 1,±1〉} → E′′. The Hamil-

tonian without spin–orbit interaction is diagonal in the partners γ of each irreducible
representation � and in the spin component MS , so it is not necessary to write them explicitly
here. The only C(k)

q (θ, ϕ) that contribute to equation (3) in the perfect trigonal bipyramid have
k = 0, 2, 4 and q = 0. To calculate the matrix elements of the Hamiltonian that contains
VCF = ∑

i=1,7 VCF (ri ), we have used the standard tensorial operator techniques [26] as well
as the unitary operators obtained from Nielsen and Koster’s tables [26,27], and we have verified
that our matrix coincides with that given in table 2 of [11].

Our main objective here is to find the gyromagnetic factors that one would expect
to measure for the penta-coordinated Co2+, and we shall employ the spectroscopic data
measured by means of diffuse reflectance to estimate the parameters B, Ds , and Dt for both
Co:Zn2(OH)PO4 and Co:Mg2(OH)AsO4. In the two rows labelled (a) of table 2 we give
the corresponding assignments of the transitions from the ground 4A′

2 state to the levels with
symmetry 4A′′

1 , 4A′′
2 , 4E′′, 4E′, 4A′

2(P), and 4E′′(P), where we use (P) to indicate higher levels
of the same symmetry.

From the eigenvalues of the Hamiltonian in the absence of the spin–orbit interaction, we
find by trial and error the values of B, Ds , and Dt that minimize the mean square deviation χ

for the two systems, and we give them in row (b) of table 5. The transitions calculated with
these two sets of values are given in the two rows of table 2 that are labelled (b). The fitting is
rather poor, and in particular the transitions to the levels 4A′′

1 , 4A′′
2 , and 4E′′ fall below the range

of the measuring equipment. As an alternative, we have fitted only the three highest transitions,
obtaining the values given in row (c) of table 5, and the corresponding values calculated with
these two sets of parameters are given in the two rows of table 2 that are labelled (c). In the
following section we shall use these two sets of values in order to estimate the gyromagnetic
factors for each of the two compounds.

3.2.2. The spin–orbit interaction in the trigonal bipyramid. It is now essential to include
the spin–orbit interaction into the calculation. The basis of the irreducible representations
�7, �8, and �9 of the double group D∗

3h have a simple expression in our system [12]:
they are given by |d7αSLJMJ 〉, and in particular we have �7(a) ≡ {|d7αSLJ ± 1/2〉},
�7(b) ≡ {|d7αSLJ ± 11/2〉}, �8(a) ≡ {|d7αSLJ ± 5/2〉}, �8(b) ≡ {|d7αSLJ ± 7/2〉},
�9(a) ≡ {|d7αSLJ ±3/2〉}, and �9(b) ≡ {|d7αSLJ ±9/2〉}. These states are easily obtained
from the |d7, α, S,MS,L,ML〉 calculated above by employing the 3-j or Clebsch–Gordan
coefficients. In the absence of magnetic fields, the two states of each Kramers doublet have the
same energy, and to calculate the energies of the system it is enough to consider only the states
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Table 5. The values of B, Ds , Dt in cm−1 that fit the optical transitions, given in table 2, of the
two penta-coordinated complexes. The best fit to the five transitions is given in row (b), and the
best fit to the three highest transitions is given in row (c). The spin–orbit parameter ζ = 580 cm−1

was used in all these fittings.

PO4 AsO4

B Ds Dt B Ds Dt

(b) 728 165 947 785 313 919
(c) 852 745 885 875 749 869

with positive MJ . As only the mixture of the 4F and 4P states is important in our problem, we
shall consider only that subspace, and the corresponding matrix of the total Hamiltonian splits
into five boxes of the following dimensions: (MJ = 1/2) → �7(a) → (7×7), (MJ = 3/2) →
�9(a) → (6 × 6), (MJ = 5/2) → �8(a) → (4 × 4), (MJ = 7/2) → �8(b) → (2 × 2),
(MJ = 9/2) → �9(b) → (1 × 1), and there are no matrix elements for MJ = 11/2, i.e.
�7(b), within the subspace {4F, 4P} of d7 that corresponds to S = 3/2. The matrices that we
have obtained coincide with those given in table 2 of [12], and their eigenvalues have been
calculated for the different sets of B-, Ds-, and Dt -values that were obtained above, employing
the one-electron spin–orbit parameter ζ = 580 cm−1. For all the set of parameters in table 5
the lowest doublet is �7(a) (MJ = ±1/2), separated by at least 75 cm−1 from the following
�9(a) (MJ = 3/2) doublet, and by more than 2377 cm−1 from the remaining doublets. This
situation is not altered by making fairly large changes in the three basic parameters B, Ds , and
Dt , and this shows that even for moderate increases in the temperature only the lowest doublet
(MJ = ±1/2) would be occupied. This doublet has allowed ESR transitions, and they should
be observed within the approximation employed. If the positions of the two lowest doublets
were exchanged, the ESR transitions of the lowest doublet would be forbidden and the spectra
should not then be observed.

The fact that the two lowest doublets haveMJ = ±1/2 andMJ = ±3/2 and are separated
by a large energy from the remaining doublets is easily understood when we notice that the
lowest level in the absence of spin–orbit interaction is 4A′

2. The orbital part A′
2 is a singlet with

no orbital angular momentum, and the total J would then correspond to S = 3/2. These four
states would be rather far apart from the remaining ones, and would split in the way calculated
above through the higher-order spin–orbit mixing with those excited states.

The present calculation was for a perfect trigonal bipyramid with D3h symmetry, and
one might wonder whether deformations with respect to this structure could alter the relative
positions of the two lowest doublets, thus causing a change from an allowed to a forbidden ESR
transition. We shall hence study the effect of these deformations, both on the relative positions
of the two lowest doublets and on the value of the gyromagnetic tensor. In this study we shall
follow a treatment similar to that employed in the octahedral case, by considering the effect
of the normal modes of the trigonal bipyramid on the Hamiltonian of the penta-coordinated
Co2+.

3.2.3. The normal modes of the trigonal bipyramid. As in the octahedral case, we are
interested in a contribution to the Hamiltonian of the same type as equation (1), but here the
normal modes Qj and Vj (r) transform like the same partners of irreducible representations of
the trigonal bipyramid. As the undistorted complex does not have a centre of symmetry, both
the even and odd modes, under reflection in the equatorial plane, may have non-zero matrix
elements within the configuration d7 of Co2+, and therefore we shall need to consider both
types of normal mode in our discussion.



The ESR of Co2+ in Zn2(OH)PO4 and Mg2(OH)AsO4 2035

The departures of the six atoms of the complex span a reducible representation� of the D3h

group, that can be reduced as follows: � = 2A′
1 +A′

2 +4E′ +3A′′
2 +2E′′ (see e.g. equation (9.19)

in [28]). Of these irreducible representations, A′
2 corresponds to an axial rotation, one E′′ to two

equatorial rotations, one A′′
2 to an axial translation, and one E′ to two equatorial translations.

After eliminating these three translations and rotations, we are left with three even irreducible
representations E′, as well as two A′′

2 and one E′′ odd representations. The six even normal
modes (Q1, . . . ,Q6) transform in pairs like the partners of E′, and together with the two modes
A′′

2 (Q7,Q8) and the two partners of E′′ (Q9,Q10) have been obtained employing standard
techniques [15, 28, 29].

The modesQ3, Q4, andQ8 are translations of only the two axial oxygens, and theQ5, Q6,
and Q7 are translations of only the three equatorial oxygens, while Q9 and Q10 are rotations
around the x- and y-axes of the two axial oxygens. As these modes are only partial rotations
or translations, they are capable of changing the crystal field. The x- and y-rotations of the
three equatorial oxygens can be combined with Q9 and Q10 to give full rotations of the trigonal
bipyramid, and the z-rotation of the three equatorial oxygens is already a full rotation, so these
three sets of displacements would not appear in our calculation.

3.2.4. The effect of the normal modes on the crystal field. By expansion of equation (3)
we have obtained an expression similar to equation (1) for the trigonal bipyramid [15].
As we are only interested in the subspace {4F, 4P} with S = 3/2 of the configuration
d7, and the Vj (r) are independent of the spin component MS , we need a 10 × 10 matrix
〈4L,MS,ML|V ′

CF |4L′,MS,M
′
L〉 for eachQj , with fixedMS andL,L′ = 3, 1. It is interesting

to note that the matrix elements associated with Q3, Q4, and Q8 are all zero: these modes
involve only the two axial ions, and the corresponding two-atom partial complex is not only
invariant under the operations of D3h, but also under rotation about a twofold axis along the
z-direction. This extra symmetry forces all the one-electron matrix elements connecting d
states of the crystal field associated with Q3, Q4, and Q8 to be zero.

The crystal fieldV ′
CF generated by the relevant normal modeQj has coefficients containing

the Co–O distances Ra and Rc, as well as the atomic averages 〈r2〉 and 〈r4〉. As Ra and Rc are
nearly the same, it is possible to express V ′

CF employing instead the crystal-field parameters
Ds and Dt [15].

As with the reference complex, we employ the 3-j coefficients to calculate the matrix ele-
ments of the crystal field V ′

CF in the representation that diagonalizes the total J and Jz, because
the doublets |d7αSLJMJ 〉 are the basis for the irreducible representations of the reference trig-
onal bipyramid, and the eigenstates of the reference complex would then belong to subspaces
with fixed MJ . In section 3.2.2 we have shown that, with the two sets of parameters B, Ds , and
Dt obtained in that section, the two lowest doublets belong to theMJ = 1/2 andMJ = 3/2 sub-
spaces and that they are separated by more than 75 cm−1, while the remaining doublets are more
than 2300 cm−1 above them. A good approximation to use for calculating the effect of V ′

CF on
these levels is then to consider the total Hamiltonian inside the two subspaces MJ = 1/2, 3/2,
and one has then to consider a matrix of 26 × 26 elements, corresponding to values of J equal
to 9/2, . . . , 1/2. The eigenstates of this matrix show that there is no change in the relative
positions of the two lowest doublets, so the ground-state remains MJ = 1/2, still leaving open
the origin of the low intensity of the ESR spectrum of the penta-coordinated complex.

3.2.5. The g-factors of the penta-coordinated Co2+. To calculate the spin Hamiltonian we
employ the traditional method [23]. In the present case we consider the four states of the two
lowest doublets of the reference trigonal bipyramid calculated in section 3.2.2 as the eigenstates
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Table 6. The principal components of the calculated g-tensor for penta-coordinated Co2+ and their
average gav for Co:Zn2(OH)PO4 and Co:Mg2(OH)AsO4. Rows (b0) and (c0) are for the reference
trigonal bipyramid, while rows (b1), (b2), (b3), (c1), (c2), and (c3) include the effect of deformations
produced by the crystallographically calculated normal modes (see the text).

g1 g2 g3 gav

PO4

(b0) 4.8027 4.8027 1.9904 3.8653
(b1) 5.0477 4.5577 2.2998 3.9684
(b2) 5.0477 4.5577 1.9904 3.8653

(c0) 5.0435 5.0435 1.9829 4.0233
(c1) 5.7379 4.3492 2.1171 4.0680
(c2) 5.7379 4.3492 1.9829 4.0233

AsO4

(b0) 4.8723 4.8723 1.9885 3.9110
(b1) 5.7637 4.2279 2.2364 4.0760
(b2) 5.7637 4.2279 1.9885 3.9934
(b3) 5.6402 4.1044 1.9885 3.9110

(c0) 5.0667 5.0667 1.9818 4.0384
(c1) 7.1232 3.5385 1.9854 4.2157
(c2) 7.1232 3.5385 1.9818 4.2145
(c3) 6.8591 3.2744 1.9818 4.0384

of the unperturbed Hamiltonian, with MJ = 1/2 as the ground doublet and MJ = 3/2 as the
excited one. Both the Zeeman term and the crystal field V ′

CF produced by the deformation of
the normal modes are perturbations, and in the usual way we find the gyromagnetic tensor g
in second order. We have calculated the three components of g for the penta-coordinated Co2+

for all the sets of B, Ds , and Dt given in table 5, and the results are given in table 6. The
values corresponding to the reference trigonal bipyramid are given in the rows (b0) and (c0),
while those given in the rows (bj ) and (cj ) (with j = 1, 2 for the phosphate and j = 1, 2, 3
for the arsenate) have been calculated employing the normal modes Qj derived from the
crystallographic positions as discussed in section 3.2.3. It is verified in table 6 that the average
of the principal values of g is not very different from 4.33, but that it changes with B and the
crystal-field parameters more than in the octahedral case. The rows (b1) and (c1) include the
effects of all normal modes, while in rows (b2) and (c2) only the even modes are considered.
In the phosphate case, the crystallographic Q1 = Q5 = 0, and for the arsenate we have also
imposed this condition in rows (b3) and (c3).

From the calculations in the present section, it follows that one should observe an allowed
ESR line of Co2+ from the penta-coordinated complex when that site is occupied. We have seen
in section 2.3 that, besides the lines associated to the octahedral spectra, there are some weak
extra lines that could be interpreted as belonging to that complex: their estimated g-factors are
given in rows (b) of table 3, and should be compared with the values given in table 6, that were
calculated for different sets of parameters derived from the optical spectra and with normal
modes calculated from the crystallographic positions. It is clear that the arsenate values in
row (c3) of table 6 are fairly close to the estimated values in row (b) from table 3. It is well
known that the gi obtained from the crystallographically calculated normal modes are generally
different from those observed experimentally, as discussed for the octahedral compounds (cf
section 3.1), and we could anticipate that a good fitting could be obtained by making small
changes in the crystallographic normal modes. To verify this assumption it is sufficient to
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change only Q2 and Q6, keeping all the remaining modes at their crystallographic values.
Employing Q2/Ra = −0.03 and Q6/Ra = −0.07 for the phosphate, we find g1 = 7.05,
g2 = 3.03, and g3 = 2.12, while for the arsenate we obtain g1 = 7.62, g2 = 3.04, and
g3 = 1.99 with Q2/Ra = 0.01 and Q6/Ra = −0.07. These fittings are fairly good, and show
that the ESR spectra of Co2+ in the two compounds can be described perfectly well within our
theory, but one should not place too much reliance on the crystal fields obtained because of
the very large errors in the experimental g-tensor.

We notice that the relative intensities of the extra lines in figure 2 are rather smaller than
those in figure 3. This can be understood because the concentration of Co2+ in the arsenate is
ten times larger than in the phosphate, and this should also alter their relative occupations.

The rather low intensity of the lines that could be attributed to the penta-coordinated
complex indicates a very low occupation of Co2+ in the penta-coordinated sites. To verify
this conjecture, we present a molecular orbital calculation of the heat of formation of these
compounds in the following section, and the results are compatible with the present conclusion.

3.3. Molecular orbital calculations

The energetics of penta- and hexa-coordinated phosphate clusters has been assessed in terms
of molecular orbital theory. Heats of formation were calculated within the well known semi-
empirical technique ‘Parametric Model 3’ (PM3) [30]. This is a technique derived from
the Hartree–Fock approximation in combination with a minimal-basis-set expansion of the
molecular orbitals. Here we used a special parametrization developed for transition metal atoms
which is contained in the package SPARTAN [31]. Correlation and relativistic effects, which
are not explicitly treated in this theory, are partly recovered from the adopting of experimental
data in the parametrization. The molecular geometries were obtained as follows. The central
metal atom and the coordinates of the first neighbouring five or six oxygen atoms were taken
from the crystal structure of the compound Co2(OH)PO4. The ligands were chosen to be
phosphoric acid molecules, OP(OH)3, since they have all bonds saturated and are neutral.
Geometry optimizations of the isolated ligand were carried out at the ab initio 6–31G∗∗ level
of calculation, in which each atomic orbital of the basis set is written as a linear combination
of Cartesian–Gaussian functions [32]. The proton-free oxygen atoms of the ligands were
then placed in the crystallographic positions of the oxygens around the metal atom such
that the O = P bond points in the M–O direction, as shown in figures 4 and 5. The PM3
heats of formation of the clusters [M(OP(OH)3)n]2+, n = 5, 6 and M = Co and Zn, were
calculated assuming that Zn ion just replaces the Co ion at frozen ligand positions. This is a
reasonable assumption since the pure Co and Zn crystals have very similar cell parameters. Co
clusters are doublets, so the unrestricted (spin-polarized) PM3 Hamiltonian was adopted. Spin
contamination was negligible in this calculation. In order to allow us to discount the energies
associated with the ligands themselves, the heats of formation of the corresponding clusters
without the central metal ion were computed. Results are shown in table 7. The values in the
first column are the contributions from the ligands to the metal cluster heats of formation. It
is then possible to evaluate the relative stabilization of Co2+ and Zn2+ ions in the penta- and
hexa-coordinated environments by taking the difference between the values in columns two or
three and column one. This gives the energies −1258.04 and −1314.30 kcal mol−1 for Co2+

at the trigonal bipyramidal and octahedral sites, respectively, while for Zn2+ the values are
346.19 and 340.00 kcal mol−1. These values show that Co has a preference for the octahedral
site amounting to ∼56 kcal, which is approximately 2.4 eV, and Zn is also slightly more stable
at the octahedral site, by ∼6 kcal, or 0.3 eV. This difference is due to the partially filled 3d
orbitals of Co that interact with the lone pairs of the neighbouring oxygens, imparting a more
covalent character to the interaction.
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Figure 4. A ball-and-stick model of the penta-coordinated metal clusters with phosphoric acid
molecules as ligands. One atom of each type is labelled in the figure.

Figure 5. A hexa-coordinated metal/phosphoric acid cluster. One atom of each type is labelled in
the figure.

A more direct comparison was made through the calculation of the heat of formation
for clusters where the metal atoms and first neighbours are in the conformation of the
Co2(OH)PO4 unit cell, as illustrated in figure 6. Two clusters were built such that in one
the Co2+ ion occupies the hexa-coordinated site and the Zn2+ ion is in the penta-coordinated
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Figure 6. The cobalt/zinc cluster built from the atomic coordinates of the Co2(OH)PO4 unit cell.
Some of the phosphate ions were replaced by phosphoric acid molecules. One atom of each type
is labelled in the figure, which shows the Co in the penta-coordinated position.

Table 7. Heats of formation, in kcal mol−1, from PM3 calculations.

'Hf (kcal mol−1) No ion Co2+ Zn2+

[M(OP(OH)3)5]2+ −1214.69 −2472.73 −868.50
[M(OP(OH)3)6]2+ −1440.16 −2754.45 −1100.15

site (cluster 1), while in the other (cluster 2), the Co2+ and Zn2+ ions are exchanged. The
phosphate ions in contact with both metal ions were replaced by H2PO4 species and the
remainder of the ligands were phosphoric acid molecules. The composition of these clusters
is then [CoZn(OH)(H2PO4)2(OP(OH)3)5]4+. PM3 calculations gave 'Hf (cluster 1) =
−2147.10 kcal mol−1 and 'Hf (cluster 2) = −2094.44 kcal mol−1; that is, the cluster with
Co2+ ion in the octahedral site is ∼53 kcal more stable than the other one. One thus expects
Co impurities in the zinc compounds to occupy preferentially the octahedral sites, and this
conclusion agrees with the very low intensity of the ESR lines attributed to Co2+ in the penta-
coordinated sites of the dilute compounds, as discussed in the previous section.

4. Discussion and conclusions

Four compounds of the adamite type: Zn2(OH)PO4, Mg2(OH)AsO4, Co2(OH)PO4, and
Co2(OH)AsO4, have been synthesized and studied, and the measurements of the optical
properties of the pure Co compounds and of the ESR of impurities of Co2+ in Zn2(OH)PO4 and
Mg2(OH)AsO4 have been discussed. Crystal-field theory has been employed in an attempt to
understand the experimental ESR results for the two Co2+ complexes with coordination five and
six that are present in the adamite structure. The Racah parameterB as well as the crystal fields
Dq for the octahedral complex and both Ds and Dt for the trigonal bipyramidal one have been
estimated from the assignments that were made of the diffuse reflectance spectrum for these
two complexes. Two alternative sets of parameters were proposed for the penta-coordinated
complex.

From the crystallographic structure, a reference octahedron centred on the Co2+ was
defined, such that the normal modes of the complex corresponding to rotations and expansions
would be zero and the remaining normal modes would not contain any contribution from these
irrelevant deformations. Using a method already applied [10] to study the ESR of Co2+ in
NH4NiPO4·6H2O, the crystal fields that would reproduce the experimental g-tensor of the
octahedral complex in both Zn2(OH)PO4 and Mg2(OH)AsO4 have been obtained.
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As the penta-coordinated complex seems to make at most minor contributions to the ESR
spectra, we have analysed the possible reasons for this behaviour. We argue that two doublets
with MJ = ±1/2 and MJ = ±3/2 would be lowest in energy, separated by a rather large
excitation energy from the remaining excited states. The MJ = ±3/2 doublet has forbidden
ESR transitions, and this would explain the experimental results if that were the ground doublet,
but when the crystal field of the trigonal bipyramid is considered together with the spin–orbit
interaction, it was found that the MJ = ±1/2 doublet, with allowed ESR transitions, is the
lowest. To verify whether this result would be altered by the deformations of the trigonal
bipyramid, we considered their effects in a way similar to that employed in the octahedral case
to calculate the g-tensor. It was necessary to derive the normal modes of the trigonal bipyramid
that are relevant to our problem, as well as the corresponding Jahn–Teller contributions V ′

CF to
the crystal field [15]. Defining a reference perfect trigonal bipyramid by the same method as
was employed in the octahedral case, the values of the relevant normal modes were obtained
by employing the crystallographic positions, and subsequently used to calculate their effect on
the relative position of the two lowest doublets. No appreciable change was found, and as an
alternative explanation we assumed that the penta-coordinated complex is scarcely occupied
in the dilute system. To verify this conclusion, the heats of formation of the octahedral and the
trigonal bipyramidal complexes with Co and with Zn as the central ions were calculated, and it
was found that their values are compatible with a rather low occupation of the penta-coordinated
site.

Employing the Jahn–Teller crystal fields together with the normal modes calculated from
the crystallographic distortions, it was possible to calculate the g-tensor, shown in table 6,
for both the perfect and the deformed trigonal bipyramid, this latter subjected to different
deformations. The trace of the g-tensor in the perfect trigonal bipyramid changes more with
the parameters B, Ds , and Dt than in the octahedral case, where it is always fairly close to 13.

The trigonal bipyramid has no centre of symmetry, and it was necessary to consider all
the normal modes, even those that are odd under reflection in the horizontal symmetry plane.
We have shown that these latter modes affect the axial component of g but that they have
little or no effect on the two equatorial components. The experimental g-tensor of the penta-
coordinated complex could be measured, but with rather large errors. As in the octahedral case,
the crystallographically determined normal modes could not explain the observed values, but
for the two types of complex it was possible to find the crystal fields that reproduce the
experimental ESR spectra for both the phosphate and arsenate compounds.

We conclude that our theoretical analysis of the ESR of the systems studied and the
molecular orbital calculation of the formation energies coincide in assigning a rather low
relative occupation of the penta-coordinated sites with respect to the octahedral ones in these
systems. We were also able to explain the experimental ESR spectra of the octahedral and of
the penta-coordinated complexes by considering the effect of the crystal fields on the g-tensor.
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[10] Goñi A, Lezama L M, Rojo T, Foglio M E, Valdivia J A and Barberis G E 1998 Phys. Rev. B 57 246
[11] Beltran F G and Palacio F 1976 J. Phys. Chem. 80 1373
[12] Palacio F 1978 J. Phys. Chem. 82 825
[13] Jahn H A and Teller E 1937 Proc. R. Soc. A 161 220
[14] Jahn H A 1937 Proc. R. Soc. A 164 117
[15] In the present work it was necessary to derive many properties of the normal modes and crystal fields of the two

complexes, and a detailed description of the procedures and necessary tables can be found in:
Foglio M E, dos Santos M C, Barberis G E, Rojo J M, Mesa J L, Lezama L and Rojo T 2001 Preprint cond-

mat/0110563
in the LANL e-print archives. Most of these tables and details have been omitted from the present paper for

brevity.
[16] Rojo J M, Mesa J L, Lezama L, Barberis G E and Rojo T 1996 J. Magn. Magn. Mater. 157+158 493
[17] Rojo T, Lezama L, Rojo J M, Insausti M, Arriortua M I and Villeneuve G 1992 Eur. J. Solid State Inorg. Chem.

29 217
[18] Rojo M M, Mesa J L, Pizarro J L, Lezama L, Arriortua M I and Rojo T 1997 J. Solid State Chem. 132 107
[19] Van Vleck J H 1939 J. Chem. Phys. 7 72
[20] Koster G F, Dimmock J O, Wheeler R G and Stats H 1963 Properties of the Thirty-Two Point Groups (Cambridge,

MA: MIT Press)
[21] Tinkham M 1956 Proc. R. Soc. A 236 549
[22] Abragam A and Pryce M H L 1951 Proc. R. Soc. A 206 173
[23] Pryce H M L 1950 Proc. R. Soc. A 63 25
[24] Wood J S 1968 Inorg. Chem. 7 852
[25] Griffith J S 1961 The Theory of Transition-Metal Ions (Cambridge: Cambridge University Press) equation (6.37)
[26] Fano U and Racah G 1959 Irreducible Tensorial Sets (New York: Academic)
[27] Nielsen C W and Koster G F 1963 Spectroscopic Coefficients for the pn, dn and f n Configurations (Boston,

MA: MIT Press)
[28] Woodward L A 1972 Introduction to the Theory of Molecular Vibrations and Vibration Spectroscopy (Oxford:

Clarendon)
[29] Wilson E B, Decius J C and Cross P C 1955 Molecular Vibrations (New York: McGraw-Hill)
[30] Stewart J J P 1989 J. Comput. Chem 10 209
[31] SPARTAN Package 1995 version 5 (Wavefunction Incorporated)
[32] For basis set definitions, see for instance

Szabo A and Ostlund N S 1989 Modern Quantum Chemistry (New York: McGraw-Hill)


